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We propose a computational method with no ad hoc empirical parameters to determine
the elastic properties of multiphase composites of complex geometries by numerically
solving the stress–strain relationships in heterogeneous materials. First the random micro-
structure of the multiphase composites is reproduced in our model by the random gener-
ation-growth method. Then a high-efficiency lattice Boltzmann method is employed to
solve the governing equation on the multiphase microstructures. After validated against
a few standard solutions for simple geometries, the present method is used to predict
the effective elastic properties of real multiphase composites. The comparisons between
the predictions and the existing experimental data have shown that the effects of pores/
voids in composites are not negligible despite their seemingly tiny amounts. Ignorance
of such effects will lead to over-predictions of the effective elastic properties compared
with the experimental measurements. When the pores are taken into account and treated
as a separate phase, the predicted Young’s modulus, shear modulus and Poisson’s ratio
agree well with the available experimental data. The present method provides an alterna-
tive tool for analysis, design and optimization of multiphase composite materials.

Published by Elsevier Inc.
1. Introduction

The problem of determining the effective linear elastic properties of multiphase composites with complex microstruc-
tures is a classical, important and yet challenging issue, with applications in almost every area of material sciences [1–5].
The effective elastic modulus is one of the most important properties that characterize the mechanical performance of mate-
rials. As is well known now, the effective elastic modulus of a multiphase composite depends not only on the corresponding
elastic properties and the volume fraction of each constitute component, but on the microstructures (i.e., the spatial distri-
bution of the components) of the composite as well [4]. The theoretical approaches found in the literature for predicting the
effective elastic modulus are mostly based on the effective medium theories which in essence provide approximate estima-
tions of the effective modulus by homogenizing the complex medium [6]. Inevitably empirical parameters have been intro-
duced into the models to account for the influence of the structural variations on the results [3,7]. Another alternative group
of analytical approaches is to provide upper and lower bounds, which were rigorously derived theoretically and then vali-
dated through experimental data [1,8,9]. In terms of experimental techniques, there have been numbers of measurement
schemes developed over the years. However more often than not, it is difficult to compare the theoretical predictions with
the experimental data, for many important features and mechanisms in a complex material, such as the shapes and spatial
distribution of inclusions, and connections and interaction between different phases, are difficult to be accounted for in a
theoretical model, other than making a few rough assumptions to either ignore or over-simplify them. On the experimental
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side, the current technology is still not advanced enough to detect many local, random and often irregular factors that col-
lectively impact the material behaviors in a significant way.

Furthermore, the existing theories fall even short when coming to design non-existent novel materials, for instance the
meta-materials, where initial design and optimization have to rely on theories [3].

Computer numerical simulation has provided a promising new way in this regard, owing to the rapid developments of
computers and computational techniques in the past few decades. A useful numerical scheme in dealing with complex
materials generally should include two major components: reproducing the microstructures of the materials so as to bring
the inherent structural complicities and internal interactions into the computer as the first and critical step, and then solv-
ing the relevant set of governing equations on the given structure. In terms of generating computerized material struc-
tures, several methods have been proposed focusing on multiphase composites. The random location of obstacles
proposed by Zhang et al. in 2006 [10] is the simplest one in constructing an artificial random microstructure, however,
the approach is too primitive to catch some of the important structural details. Snyder et al. [3] proposed a more advanced
method to generate randomly distributed circular inclusions on hexagonal pixels. Digital micro-tomographic information
and statistical correlation functions have been adopted in reconstruction of the structures more accurately [9,11,12]. In-
spired by the spirit of the cluster growing theory [13], Wang et al. [14] have recently developed a simpler method, the
random generation-growth (RGG) method, to reproduce the random microstructures of multiphase porous media. The
generated microstructure is conveniently controlled by a few statistical parameters each of which has a clear physical sig-
nificance. The RGG method has shown success in predicting thermal conductivities of various multiphase media, as val-
idated by the experimental data [14,15].

After the reconstruction of materials via the algorithms, the relevant governing equations have to be solved. However
such traditional PDE solvers as the finite-difference scheme [4] or the popular finite-element technique [16,17] require
vast grid refinements and thus demand huge computational resources when the geometries of the microstructure are
complex, especially for multiphase conjugate cases. A high-efficiency lattice Boltzmann method (LBM) has recently been
developed to tackle various PDEs with conservation and conjugation effects during evolution of thermal and electrical
transport problems [18,19]. Since complex geometry boundary conditions can be easy implemented in LBM [20–24],
application of this approach to solving the governing equations of elastic mechanics in multiphase composites becomes
a logical development.

This contribution aims to develop a numerical method in calculating or predicting the effective elastic properties of mul-
tiphase composites. We first devise the random generation-growth method for reproducing the microstructures of three-
phase (3 P) composites and then solve the governing equations by the LBM method. The calculated elastic moduli will be
compared with existing experimental data and the physical mechanisms involved will be discussed.

2. The numerical scheme

This section will describe the details of the numerical model, its basic assumptions and the governing equations. The new
approach reproduces the multiphase microstructure by the random generation-growth method and solves the governing
equations by the LBM algorithm.

2.1. Basic hypothesis and equations

Consider a simple pure elastic compression test on a multiphase composite as shown in Fig. 1. The bottom surface of the
domain is fixed and the top surface is under a uniform normal compressive force, F. We suppose only small elastic strain
occurs in the direction of the force without any multi-dimensional effects. After reaching a steady state, the governing equa-
tion for describing the displacement field can be expressed by a simple Poisson equation [25], i.e.
r � EðrÞr½AðrÞUðrÞ�f g ¼ 0 ð1Þ
where E is the local Young’s modulus, r the position, A the cross-sectional area, and U the displacement in the direction of
force. Since no slippage is considered, Eq. (1) is subjected to the stress and strain continuities at each interface between two
phases ði; jÞ:
Ujint;i ¼ Ujint;j ð2Þ
Ei � rUjint;i ¼ Ej � rUjint;j ð3Þ
The force F on the top surface leads to a second-type (Neumann) boundary condition. However since the application of F,
under the pure elastic assumption, does not alter the effective property noticeably, we use the Dirichlet boundary condition
by assigning a known displacement, U1, at the top surface and U0 at the bottom:
Ujtop ¼ U1 ð4Þ
Ujbottom ¼ U0 ð5Þ
While the periodic boundary conditions are implemented on the both sides. Once the displacement field is solved, the effec-
tive Young’s modulus of the composite is obtained as



Fig. 1. Schematic diagram of stress and strain boundaries for a multiphase composite.
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Eeff ¼
stress
strain

¼ F=A
DU=H

ð6Þ
where the external force F is calculated as
F ¼ E � ArU ð7Þ
Eqs. (1)–(7) describe a simple yet novel way to determine the effective Young’s modulus of a heterogeneous multiphase
composites by solving a Poisson equation at given conditions. Although is the case shown here is one-dimensional, it could
be extended to three-dimensional problems [26,27]. Another interesting thing is that if the external force on the top surface
is a shear force, i.e. tractions on top and bottom surfaces, and the shear displacement U only occurs in the shear direction, i.e.,
simple shear, the current method can be extended to calculating the effective shear moduli of the system.

2.2. Structure reproduction

We have proposed a general random generation-growth algorithm in our previous work [14]. Here we adopt it for repro-
ducing the microstructure of a composite of two solid components, one dispersed into the other continuous matrix, and con-
taining small amount of voids (or air), thus actually a three-phase system [28,29]. Before the generation process, we select
the continuous solid phase as the non-growing phase, the dispersed solid as the first growing phase and the voids (or pores)
the second growing phase. We use a superscript number below to indicate the corresponding growing phase. The growing
process is then conducted as follows.

(i) Randomly locate cores/seeds of the first growing phase in a grid system based on a core distribution probability, c1
d ,

whose value is no greater than the volume fraction of the phase. Each cell in the grid will be assigned a random num-
ber of a uniform distribution function within (0,1). Each cell whose random number is no greater than c1

d will be cho-
sen as a core/seed;

(ii) Expand every element of the growing phase to its neighboring cells in each direction based on the given directional
growth probability, D1

i , where i represents the direction. Again for each growing element, new random numbers will
be assigned to its neighboring cells. The neighboring cell in direction i will become part of the growing phase if its
random number is no greater than D1

i ;
(iii) Repeat the growing process of (ii) until the volume fraction of the first growing phase reaches its given value /1;
(iv) As to the second growing phase (pores), we treat the pores as another discrete growing phase. Therefore it grows from

separate seeds, very similar to the process for the first growing phase described in (i)–(iii), yet controlled by c2
d and D2

i

correspondingly.
(v) Stop the pores growth once its volume fraction reaches the given value /2 (or more often expressed as the porosity e).

Thus the generated microstructure of multiphase composites can be controlled by three parameters ðcd;Di;/Þ for each
growing phase. Every parameter in the generation process has a physical significance and can be determined through exper-
imental observation and measurements. The core distribution probability cd is defined as the probability of a cell/grid to
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become to a core of the growing phase and it value depends on the number density of the growing units. For a growing phase
with a given volume fraction v f , the value of cd could be determined by
cd ¼ / � V=ðN � VpÞ ð8Þ
with V representing the total volume of the system, N the total grid number and Vp the average volume of the growing par-
ticles/pores.

The directional growth probability Di is defined as the probability for a yet-to-be-occupied cell to merge into a neighbor-
ing cell in the ith direction so as to become part of the growing phase. An appropriate arrangement of the directional growth
probabilities may lead to an isotropic structure or any other directional formations. For two-dimensional cases, each grid cell
has eight growing directions to its neighbors, as seen in Fig. 2. There are four main directions (1,2,3,4) and four diagonal
directions (5,6,7,8). To obtain an isotropic structure in such systems, we set both the main directional growth probabilities
D1�4 and the diagonal directional growth probabilities D5�8 into a constant in each respective group, and the both constants
in a fixed ratio. It is the relative value not the absolute value of Di that controls the anisotropy of structure. For instance by
designating the probabilities ratio, D1�4 : D5�8 ¼ 4, we get the directional growth probability consistent with the equilibrium
density distribution function for isotropic materials [30,31].

2.3. The lattice Boltzmann algorithm

The lattice Boltzmann method (LBM) is intrinsically a mesoscopic approach based on the evolution of statistical distribu-
tion of particles on lattices, and has achieved considerable success in solving various PDEs [32–34,18,19]. The most impor-
tant advantages of the LBM are the easy implementations of interparticle interactions and the complex geometry boundary
conditions [20,21,28,29], and in general the conservation laws of mass or/and energy can hold automatically without addi-
tional computational efforts [33]. Additional scheme dealing with the multiphase conjugate boundary conditions has been
developed very recently using the LBM method as well and has shown high computation efficiency [19].

For the governing equation, Eq. (1), we employ the evolution equation on discrete lattices for each phase as
gaðrþ eadt ; t þ dtÞ � gaðr; tÞ ¼ �
1
sn
½gaðr; tÞ � geq

a ðr; tÞ�; ð9Þ
The equilibrium distribution of the evolution variable, ga, for the two-dimensional nine-speed (D2Q9) model is
geq
a ¼

0 a ¼ 0
U=6 a ¼ 1;2;3;4
U=12 a ¼ 5;6;7;8

8><
>: ð10Þ
the microscopic evolution velocity
ea ¼
ð0;0Þ a ¼ 0
ðcos ha; sin haÞc; ha ¼ ða� 1Þp=2 a ¼ 1;2;3;4ffiffiffi

2
p
ðcos ha; sin haÞc; ha ¼ ða� 5Þp=2þ p=4 a ¼ 5;6;7;8

8><
>: ð11Þ
and the dimensionless relaxation time
sn ¼ 3
2

En

c2dt
þ 0:5 ð12Þ
Fig. 2. Eight growth directions of each point for 2D systems.
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where the superscript n still represents the nth phase, dt the time step, er the relative dielectric constant, and c a pseudo
sound speed whose value can theoretically take any positive value to insure s values within (0.5,2) [18]. The displacement
and the force on each lattice are then calculated by
U ¼
X

a
ga ð13Þ

F ¼
X
a

eaga

 !
sn � 0:5

sn
ð14Þ
For the Dirichlet boundary, we employ the bounce-back rule of the non-equilibrium distribution proposed by Zou and He
[35]. After the displacement field is solved, the effective Young’s modulus can then be determined based on Eq. (6) as:
Eeff ¼
H �
R

F � dL
DU

R
dL

ð15Þ
3. The existing theoretical models

To validate our numerical method initially, we will compare our results with those of the basic models for materials
with simple structures. The simplest theoretical approaches to predict the moduli of two-phase composites are the clas-
sical averaging schemes: the Voigt model and the Reuss model [36,37]. The Voigt model assumes the constituents of a
composite to be in parallel arrangement subjected to the same strain (isostrain). The effective modulus of the composite
is thus given by
Eeff ¼ E1/
1 þ E2ð1� /1Þ ð16Þ
where E1 and E2 are the Young’s moduli of the phase 1 and phase 2, respectively, and /1 is the volume fraction of the phase 1.
In the Reuss model, the constituents of the composite are under the same stress (isostress) and the effective modulus is

given by
Eeff ¼
/1

E1
þ ð1� /1Þ

E2

" #�1

ð17Þ
Hashin and Shtrikman [1] developed models with assumed macroscopical isotropy and quasi-homogeneity of compos-
ites, where the reinforcing particles are uniformly dispersed into the matrix. Depending on whether the stiffness of the ma-
trix material is larger or smaller than that of the reinforcement, the upper and lower bounds of the effective mechanical
properties are calculated as:
Ku
c ¼ Kp þ

1� /
1

Km�Kp
þ 3/

3Kpþ4Gp

ð18Þ

Kl
c ¼ Km þ

/
1

Kp�Km
þ 3ð1�/Þ

3Kmþ4Gm

ð19Þ

Gu
c ¼ Gp þ

1� /
1

Gm�Gp
þ 6/ðKpþ2GpÞ

5Gpð3Kpþ4GpÞ

ð20Þ

Gl
c ¼ Gm þ

/
1

Gp�Gm
þ 6ð1�/ÞðKmþ2GmÞ

5Gmð3Kmþ4GmÞ

ð21Þ
where / refers to the volume fraction of the reinforcing particles, Kp;Km and Kc are the bulk moduli of the particles, matrix
and composite, and Gp;Gm and Gc their shear moduli respectively. The superscripts ‘‘u” and ‘‘l” correspond to the upper and
lower bounds, respectively. The upper and lower Hashin–Shtrikman (HS) bounds for the Young’s modulus of the composite
can then be calculated by [8]:
EHS ¼
9KcGc

3Kc þ Gc
ð22Þ
where the upper and lower Kc and Gc values are used to determine the respective EHS bounds.

4. Results and discussion

The present methods will first be validated by comparisons with the basic models for composites of simple structures.
Then they will be used to deal with multiphase composites with much more complex internal structures and the results will
be verified by the experimental data.
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4.1. Reproduction of complex multiphase microstructures

Using the present generation method, we have reproduced microstructures for some real multiphase composites
based on the experimental information. For instance, Tilbrook et al. [7] provided a series of microstructural images of
alumina–epoxy composite samples. Pores are clearly observable in the composites, although the porosity details are
not reported. Their results show roughly that the porosity decreases with the alumina volume fraction /Al2O3 when
/Al2O3 P 50%, but increase with /Al2O3 otherwise. Since it is reported that the porosity e was at most 5% in the
Al2O3–Epoxy composites, we estimate here a bi-linear relationship between the porosity e and the alumina volume frac-
tion /Al2O3
Fig. 3.
and cpor

d

e ¼
0:1 � /Al2O3 ðvAl2O3

f < 50%Þ

0:1 � ð1� /Al2O3 Þ ðvAl2O3
f P 50%Þ

8<
: ð23Þ
Fig. 3 shows six generated random microstructures of the Al2O3–Epoxy–Pore composites using our approach on a
200� 200 grid system, where the light phase is the alumina, the grey area is the epoxy and the dark spots are the pores.
Compared with the microstructure images of the actual composites, see Fig. 1 in Ref. [7], the regenerated ones here have
captured the structure details and the stochastic characteristics.
Reproduced three-phase microstructures of alumina–epoxy composites by the random generation-growth algorithm. cAl2 O3
d ¼ 0:1 � /Al2 O3 ð1� /Al2 O3 Þ

e ¼ ð1� /Al2 O3 Þ � cAl2 O3
d for /Al2 O3 P 50% or cpore

d ¼ /Al2 O3 � cAl2 O3
d for /Al2 O3 < 50%.



Fig. 4. Two basic structures for validations.
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4.2. The benchmarks validations

To validate our methods, we first compare our predicted effective elastic moduli for two simple structures, the parallel
and series structures in Fig. 4, with those by the basic models correspondingly. The Voigt model and the Reuss model give
exact analytical solutions for these two simple structures in Eqs. (15)–(16), and Fig. 5 compares the predicted effective mod-
uli versus the volume fraction of phase 1, where E1 ¼ 1 GPa and E2 ¼ 10 GPa with our predictions. It is clear that the present
methods agree very well with both basic models.

To further demonstrate the robustness of our approach, we allow the modulus ratio E1:E2 to range from 1:2 to 1:10000 by
keeping E1 ¼ 1:0 GPa as a constant. Table 1 lists the calculated effective moduli comparing with the basic solutions for
/ ¼ 0:5. Such a large contrast between E1 and E2 leads to a long computational time for our algorithms to converge to a stea-
dy result, and yet provides a useful test on our model performance. The deviations between the predictions are no greater
than 0.006% for the parallel structure and 0.765% for the series structure, showing a good accuracy of our approach.

4.3. The Young’s modulus of complex materials

After the validations of our method for simple structures, we apply it to investigating the effective elastic moduli of mul-
tiphase composites with complex microstructures. We used the random generation-growth method to reproduce micro-
structures of the composites as introduced above and then solved the governing equations by the lattice Boltzmann
method to obtain the predictions. Then we compare in Fig. 6 our predictions with the measurements as well as the predic-
tions by other theoretical models in [38] for the effective Young’s modulus of Al—Al2O3 composites. The properties used in
the simulations are listed in Table 2. The present two-phase predictions (solid line with stars) in general seem to have over
Fig. 5. Comparisons between our predicted effective modulus (symbols) with theoretical models for isostrain and isostress modes (lines) at E1 ¼ 1 GPa and
E2 ¼ 10 GPa.



Table 1
Comparisons between predicted results and theoretical solutions where E1 ¼ 1:0 ðGPaÞ.

Ec Isostrain mode Isostress mode

E1:E2 Voigt model
(GPa)

Present predictions
(GPa)

Relative deviations
(%)

Reuss model
(GPa)

Present predictions
(GPa)

Relative deviations
(%)

1:2 1.500 1.500 0.000 1.333 1.332 0.075
1:10 5.500 5.500 0.000 1.818 1.815 0.165
1:100 50.50 50.50 0.000 1.980 1.976 0.202
1:500 250.5 250.5 0.000 1.996 1.991 0.250
1:1000 500.5 500.5 0.000 1.998 1.993 0.250
1:10000 5000.5 5000.2 0.006 1.9998 2.0151 0.765

Fig. 6. Comparisons of our two-phase predictions of effective Young’s Modulus, as a function of alumina volume fraction, for Al–Al2O3 composites with
experimental data [38] and various theoretical modeling results.
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estimate composite property when the alumina volume fraction is lower than 0.95. We also noticed that the predicted HS
lower bound are sometime even greater than the experimental data, another sign of overestimation. A careful examination of
the optical micrographs of the Al—Al2O3 composites in Fig. 1 by Moon et al. [38] shows some visible pores in the samples. We
suspect such uncounted material defects may be responsible for the overestimation.

Thus we modify our predictions by including some pores as another phase residing in the composite. We estimated the
porosity of such composite roughly at 5% when the alumina volume fraction is no greater than 90%, and at 2.5% otherwise.
The elastic modulus of the air is assigned a small value Ea ¼ 10�3 GPa in our simulations. Fig. 7 shows our predicted effective
Young’s moduli for such three-phase composites along with the same experimental data. The agreement becomes much bet-
ter in general over all the alumina volume fraction range. This indicates that the pores influence on the effect elastic prop-
erties of solid composites is not negligible even if the porosity is as small as 2.5%.

Another case we calculated is the alumina–epoxy composite discussed in Section 4.1, and a bi-linear relationship between
the porosity and the alumina volume fraction is already given in Eq. (23). We employ such a relationship as in Eq. (23) for our
predictions. The properties of alumina and epoxy are listed in Table 2. Fig. 8 shows a good agreement between the predicted
effective Young’s modulus and the experimental data by Tilbrook et al. [7]. At a high modulus ratio between the two solid
components ðEAl2O3 : Eepoxy ¼ 390 : 3:4Þ, the HS bounds fail to provide acceptable estimations whereas the predictions by the
present method again exhibit high agreement with the experimental data. If there were more details on the porosity, the
prediction accuracy could be better.
Table 2
Elastic properties of composite-materials.

Property Al2O3 Al Epoxy

E (GPa) 390 69 3.4
K (GPa) 260 67 3.8
G (GPa) 156 26 1.26



Fig. 7. The three-phase (Al;Al2O3 and air) predictions of effective Young’s Modulus, as a function of alumina volume fraction, for Al� Al2O3 composites
compared with the experimental data [38]. The air volume fraction, e, is set at 5% when the alumina volume fraction /Al2 O3

6 90% and e ¼ 2:5% when
/Al2 O3

> 90%.

Fig. 8. Comparisons of three-phase (Epoxy, Al2O3, air) predictions of effective Young’s Modulus, as a function of alumina volume fraction, for Epoxy–Al2O3

composites with experimental data [7] and various theoretical modeling results. Linear relationships between porosity and volume fraction of alumina are
assumed: for /Al P 50%; e ¼ 0:1ð1� /AlÞ; for /Al < 50%; e ¼ 0:1/Al.
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4.4. The shear modulus and the Poisson’s ratio

As mentioned before, when the direction of external force F varies from normal to parallel to the top surface, a very sim-
ilar governing equation as Eq. (1) can be obtained to describe the shear displacement with varying local shear modulus of
composite-materials. The modeling process is quite similar to that for effective Young’s modulus. Fig. 9 shows the predicted
effective shear modulus of alumina–epoxy composites versus the alumina volume fraction for the same three-phase micro-
structures in Fig. 8. The given shear moduli of Al2O3 and epoxy are listed in Table 2. We assign the shear modulus of pores a
tiny value ðGa ¼ 10�5 GPaÞwhich actually has little effect on the final predictions. Again with the dispersed pores/voids con-
sidered, the predicted effective shear modulus of Al2O3–Epoxy composites agree well with the experimental measurements
[7].

After both the Young’s modulus and the shear modulus are predicted, by assuming isotropy of the composite at the
macro-level, the effective Poisson’s ratio is subsequently calculated by [7]
m ¼ E
2G
� 1; ð24Þ



Fig. 10. Comparisons between predicted effective Poisson’s ratio as a function of alumina volume fraction for Epoxy–Al2O3 composites and the
measurements [7].

Fig. 9. Predicted effective shear Modulus as a function of alumina volume fraction for Al2O3–Epoxy–air (three-phase) composites compared with the
experimental data [7] and HS bounds.
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and the results are compared with the available experimental data in Fig. 10. The theoretical models predict that the Poisson
ratio should fall within the region of (0.25,0.35) if the Al2O3–Epoxy composite is treated as two-phase only, again an over-
estimation of the lower bound. This further confirms that the effects of pores/voids on the effective elastic properties of com-
posites are not negligible.

Note that, in all the cases shown above, the present methods have demonstrated reliable and robust performance for
accurate predictions without resorting to any empirical parameters.
5. Conclusions

A new numerical approach for elastic properties prediction of multiphase composites has been developed in this study. A
random generation-growth method is proposed for reproducing the complex microstructures of multi-solid composite with
dispersed pores/voids inside. A high-efficiency lattice Boltzmann method is then employed to solve the governing equations
through multiphase microstructures with complex geometries by varying the local relaxation time corresponding to the lo-
cal material property. After validated by a few basic models for simple geometries, the present method is used to model the
effective elastic properties of several actual composites and the results are compared well with the existing experimental
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data. It is demonstrated that despite their tiny amounts, the pores/voids dispersed in composites if ignored likely lead to
non-negligible deviations in the predicted effective elastic properties, compared with the experimental measurements.
When the pores are taken into account and treated as another separate phase, the predicted Young’s modulus, shear mod-
ulus and Poisson’s ratio agree well with the available experimental data. Although the present governing equations are based
on a one-dimensional assumption, they seem to work well for composites of multi-dimensional microstructures. The present
method thus provides a robust tool for analysis, design and optimization of multiphase composite-materials, without resort-
ing to empirical parameters
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